SLICING THEOREMS FOR n-SPHERES IN EUCLIDEAN (n+1)-SPACE

BY ROBERT J. DAVERMAN(1)

Abstract. This paper describes conditions on the intersection of an n-sphere Σ in Euclidean (n+1)-space E^{n+1} with the horizontal hyperplanes of E^{n+1} sufficient to determine that the sphere be nicely embedded. The results generally are pointed towards showing that the complement of Σ is 1-ULC (uniformly locally 1-connected) rather than towards establishing the stronger property that Σ is locally flat. For instance, the main theorem indicates that $E^{n+1} - \Sigma$ is 1-ULC provided each non-degenerate intersection of Σ and a horizontal hyperplane be an (n-1)-sphere bicollared both in that hyperplane and in Σ itself $(n \neq 4)$.

1. Introduction. Much of the literature that treats the problem of determining properties of the embedding of an object Σ in E^n from information about the intersection of Σ with the horizontal hyperplanes of E^n focuses on the case n=3. Such a problem first arose in this dimension when J. W. Alexander [1] suggested that a 2-sphere in E^3 might be embedded just as a round sphere if each of its intersections with the horizontal planes were either a point or a simple closed curve. Recently Eaton [11] and Hosay [12] showed this to be true. After generalizations by Loveland [15] and Jensen [13], Cannon proved that the same property is held by any 2-sphere Σ in E^3 such that no intersection of Σ with a horizontal plane has a degenerate component [7].

For higher dimensions Bryant has proved that a k-dimensional compact set X in E^n , where $n-k \ge 3$, has a 1-ULC complement if the complement of X with respect to each member of some dense subset of the horizontal hyperplanes of E^n is 1-ULC [5].

The main results of this paper are found in §5, where it is shown that a closed n-manifold Σ topologically embedded in E^{n+1} ($n \neq 4$) is nice (meaning, $E^{n+1} - \Sigma$ is 1-ULC) if each nondegenerate intersection Σ_t of Σ and a horizontal, n-dimensional hyperplane in E^{n+1} is a PL (n-1)-manifold bicollared in that hyperplane and nice in Σ ($\Sigma - \Sigma_t$ is 1-ULC). Most of the techniques required are consigned to §4. In §6 other generalizations to the results mentioned in the first paragraph are given, the methods for which are taken from [7] and [12]. In addition, we describe

Received by the editors March 15, 1971.

AMS 1970 subject classifications. Primary 57A45, 57A50; Secondary 57A15.

Key words and phrases. Horizontal hyperplane of Euclidean space, bicollared submanifold, locally flat submanifold, locally simply connected, homeomorphic approximation, topological embedding.

⁽¹⁾ Research was supported in part by NSF Grant GP-19966.

in §3 some methods, similar to but weaker than those of the three-dimensional case (see [3]), for improving mappings of a disk into the closure of a complementary domain of an n-manifold in an (n+1)-manifold.

2. **Definitions and notation.** An *n-manifold* is a separable metric space which is locally homeomorphic to E^n ; thus, the term manifold is reserved for manifolds without boundary. For simplicity we shall assume all manifolds to be connected, but they need not be compact or triangulated. A manifold that is compact (and without boundary) is said to be *closed*.

A subset S of a metric space is called an ε -subset if and only if the diameter of S, written diam S, is less than ε .

Suppose f and g are maps of a space X into a space Y that has a metric ρ . The symbol $\rho(f,g) < \varepsilon$ means that $\rho(f(x),g(x)) < \varepsilon$ for each x in X. The maps f and g are said to be ε -homotopic (ε -isotopic) if and only if there exists a homotopy (isotopy) h_t sending X into Y such that $h_0 = f$, $h_1 = g$ and $\rho(h_s, h_t) < \varepsilon$ for all s, t in [0,1].

A map f of the metric space Y into a subset A is an ε -map if and only if $\rho(y, f(y)) < \varepsilon$ for each $y \in Y$.

The symbol Δ^2 denotes a 2-simplex fixed throughout this paper and $\partial \Delta^2$ denotes its boundary. Given a triangulation R of Δ^2 , we use $R^{(i)}$ to denote the *i*-skeleton of R (i=0,1).

For any point p in a metric space S and any positive number δ , $N_{\delta}(p)$ denotes the set of points in S whose distance from p is less than δ .

Let A denote a subset of a metric space X and p a limit point of A. We say that A is locally simply connected at p, written 1-LC at p, if and only if for each $\varepsilon > 0$ there is a $\delta > 0$ such that each map of $\partial \Delta^2$ into $A \cap N_{\delta}(p)$ can be extended to a map of Δ^2 into $A \cap N_{\varepsilon}(p)$. Furthermore, we say that A is uniformly locally simply connected, written 1-ULC, if for each $\varepsilon > 0$ there is a $\delta > 0$ such that each map of $\partial \Delta^2$ into a δ -subset of A can be extended to a map of Δ^2 into an ε -subset of A.

In the same context we say that A is locally arcwise connected at p, or 0-LC at p, if and only if for each $\varepsilon > 0$ there exists a $\delta > 0$ such that any map of ∂I (where I = [0, 1]) into $A \cap N_{\delta}(p)$ extends to a map of I into $A \cap N_{\varepsilon}(p)$. We define analogously the uniform condition 0-ULC.

For a subset U of a space S we use the symbol Cl U to denote the closure of U and Bd U to denote the (topological) boundary of U in S.

Let Σ be an *n*-manifold embedded in the interior of an (n+1)-manifold M as a closed subset, and let U be an open subset of $M-\Sigma$. Then Σ is collared from U if and only if there exists a homeomorphism g of $\Sigma \times I$ into Cl U such that g(s,0)=s for each s in Σ . Similarly, Σ is bicollared in M if and only if there exists a homeomorphism h of $\Sigma \times [-1, 1]$ into M such that h(s, 0)=s for each s in Σ . In addition, Σ is locally flat in M if and only if each point s of Σ has a neighborhood N (relative to M) such that $N \cap \Sigma$ is bicollared in N.

Let *n* be a positive integer. For each real number *t* define E_t , the hyperplane of E^{n+1} at the *t*-level, as $\{(x_1, \ldots, x_{n+1}) \in E^{n+1} \mid x_{n+1} = t\}$. For any subset Σ of E^{n+1} we define Σ_t as $\Sigma \cap E_t$, and for any set *C* of real numbers we define $\Sigma(C)$ as $\bigcup \{\Sigma_t \mid t \in C\}$; however, for an interval (a, b) we simplify $\Sigma((a, b))$ to $\Sigma(a, b)$.

3. Altering maps of a disk.

LEMMA 3.1. Suppose Σ is an n-manifold embedded in the interior of an (n+1)-manifold M as a closed separating subset, U a component of $M-\Sigma$, X a closed subset of Σ such that $Cl\ U-X$ is 1-LC at each point of X, R a triangulation of Δ^2 , T a subdivision of R, and F a map of Δ^2 into $Cl\ U$ such that $F(|R^{(1)}|) \subset U$.

Then for each $\varepsilon > 0$ there exists a map G of Δ^2 into Cl U such that

- (a) $G \mid |R^{(1)}| = F \mid |R^{(1)}|,$
- (b) $\rho(F, G) < \varepsilon$,
- (c) $G(|T^{(1)}|) \subset U$,
- (d) $G(\Delta^2) \cap X = \emptyset$.

Proof. Note that, since $F(\Delta^2)$ is compact, there exist a neighborhood V of $F(\Delta^2)$ (relative to Cl U) and a positive number δ such that any map of $\partial \Delta^2$ into a δ -subset of V - X can be extended so as to send Δ^2 into an $(\varepsilon/3)$ -subset of Cl U - X.

Now we simply modify F, beginning with the 0-skeleton of T and working up. In case $v \in T^{(0)}$ and $F(v) \in \Sigma$, define G(v) as a point of $U \cap V$ very close to F(v); when $F(v) \notin \Sigma$, define G(v) = F(v). Since U is 0-LC at each point of Σ [17, Theorem II.5.35], then, for each 1-simplex σ of T, G can be extended along σ in such a way that $G(\sigma) \subseteq U \cap V$ and $\rho(G|\sigma, F|\sigma) < \varepsilon/3$; in case $\sigma \subseteq |R^{(1)}|$, define $G|\sigma = F|\sigma$. Because first we could have subdivided T (if necessary), we can assume that, for each 2-simplex τ of T, Diam $F(\tau) < \varepsilon/3$ and Diam $G(\partial \tau) < \delta$. According to the previous paragraph, G can be extended over τ into an $\varepsilon/3$ -subset of Cl U - X. It follows easily that $\rho(F, G) < \varepsilon$.

Theorem 3.2. Suppose Σ is an n-manifold embedded in the interior of an (n+1)-manifold M as a closed separating subset, U a component of $M-\Sigma$, and f a map of Δ^2 into Cl U with $f(\partial \Delta^2) \subset U$. Suppose $\{X^i\}$ is a countable collection of closed subsets of Σ such that Cl $U-X^i$ is 1-LC at each point of X^i $(i=1,2,\ldots)$. Then for each $\varepsilon>0$ there exists a map g of Δ^2 into Cl U such that

- (1) $g|\partial \Delta^2 = f|\partial \Delta^2$,
- (2) $\rho(f,g) < \varepsilon$,
- (3) $g^{-1}(\Sigma \cap g(\Delta^2))$ is 0-dimensional,
- (4) $g(\Delta^2) \cap X^i = \emptyset$ for $i = 1, 2, \ldots$

The proof follows from routine applications of Lemma 3.1.

This result yields the following corollary, which can be regarded as a very weak version of [3, Theorem 4.2].

COROLLARY 3.3. Suppose Σ is an n-manifold embedded in the interior of an (n+1)-manifold M as a closed separating subset, U a component of $M-\Sigma$, and f a map of Δ^2 into Cl U such that $f(\partial \Delta^2) \subset U$. Then for each $\varepsilon > 0$ there exists a map g of Δ^2 into Cl U such that (i) $g|\partial \Delta^2 = f|\partial \Delta^2$, (ii) $\rho(f,g) < \varepsilon$, and (iii) $g^{-1}(\Sigma \cap g(\Delta^2))$ is 0-dimensional.

4. Embedding Cartesian products in E^{n+1} . Let n denote a fixed positive integer. Obviously there exists a countable collection \mathcal{M} of closed, PL (n-1)-manifolds such that any closed, PL (n-1)-manifold is homeomorphic to some member of \mathcal{M} . (In fact, this holds even without the PL hypothesis [8].)

In this section Σ will denote an *n*-manifold embedded in E^{n+1} as a closed subset, U a component of $E^{n+1}-\Sigma$, and (a,b) an interval of real numbers such that, for each $t \in (a,b)$, Σ_t is homeomorphic to some member of \mathcal{M} and is collared from U_t . Let $(a,b)_M$ be the set of all t in (a,b) such that Σ_t is homeomorphic to M, where $M \in \mathcal{M}$. For each such M and each $t \in (a,b)_M$ define an embedding of $M \times [-1,1]$ into $Cl\ U_t$ such that $\lambda_t(M \times \{-1\}) = \Sigma_t$. Topologize the set $\{\lambda_t \mid t \in (a,b)_M\}$ by the sup-norm metric in E^{n+1} , producing a separable metric space.

As suggested by Bryant [4] (and in the unpublished work of Bing [2]), one can easily establish the following lemma.

Lemma 4.1. There exists a countable subset \mathcal{D} of (a, b) such that to each t in $(a, b) - \mathcal{D}$ there correspond two sequences $\{s(i)\}$ and $\{u(i)\}$ of real numbers, with a < s(i) < t < u(i) < b, such that each of the associated sequences $\{\lambda_{s(i)}\}$ and $\{\lambda_{u(i)}\}$ converges (homeomorphically) to λ_t .

Throughout the rest of §§4 and 5, \mathcal{D} will denote the subset of (a, b) described in Lemma 4.1, and n will denote a fixed integer other than 4.

The following result can be established by adding simple epsilonics to the proof of Borsuk's theorem (see [10, Theorem 10.2]).

LEMMA 4.2. Let A be an ANR embedded as a closed subset of a metric space X, $\varepsilon > 0$, and $f: X \to A$ an ε -map such that f|A is ε -homotopic (in A) to the identity map. Then there exists a 2ε -retraction of X onto A.

LEMMA 4.3. A. If $t \in (a, b)_M - \mathcal{D}$, then there exists a homeomorphism h of $M \times [-1, 1]$ onto a subset A_t of Cl U such that

$$\Sigma \cap A_t = h(M \times \{-1\}) \cup h(M \times \{1\}) = \Sigma_s \cup \Sigma_u,$$

where a < s < t < u < b and $A_t \cap E_z = \emptyset$ for z not in [s, u].

B. For any such A_t , let X_t denote the closure of the component of $\operatorname{Cl} U - A_t$ containing Σ_t . Then, for each $\varepsilon > 0$, A_t can be obtained so that there exists an ε -retraction of X_t onto A_t .

Proof. Fix a point t of $(a, b)_M - \mathcal{D}$. By restricting [-1, 1] to a subinterval containing -1, if necessary, we may assume that diam $\lambda_t(\{p\} \times [-1, 1])$ is less than

 $\varepsilon/18$ for each p in M. Since $\lambda_t(M \times \{0\})$ is an ANR, the obvious retraction of $\lambda_t(M \times [-1, 1])$ onto $\lambda_t(M \times \{0\})$ can be extended over a neighborhood N of $\lambda_t(M \times [-1, 1])$ to an $\varepsilon/18$ -retraction R of N onto $\lambda_t(M \times \{0\})$. Furthermore, N can be chosen as a product $N' \times (s', u') \subset E^n \times E^1$ where N' is a bounded open subset of E^n and $N \cap \Sigma = \Sigma(s', u')$.

It is sufficient to describe the homeomorphism h of $M \times [-1, 1]$ onto some (as yet undefined) A_t subject to the following conditions:

- (1) $X_t \subseteq N$,
- (2) diam $h(\{p\} \times [-1, 1]) < \varepsilon/6$ for each p in M,
- (3) $h(p, 0) = \lambda_t(p, 0)$ for each p in M.

Let g denote the map of A_t to $h(M \times \{0\})$ sending each $h(\{p\} \times [-1, 1])$ to h(p, 0). The product structure on A_t will provide the natural guide for defining an $\varepsilon/6$ -homotopy $G_s: A_t \to A_t$ between g and the identity map. Note that condition (2) above and the definition of R imply that

diam
$$Rh(\{p\} \times [-1, 1]) < \varepsilon/3$$

for each p in M. Thus, RG_s will be an $\epsilon/3$ -homotopy between Rg = g and R. This means that $R|A_t$ will be $\epsilon/2$ -homotopic in A_t to the identity map, and part B of this lemma will be a consequence of Lemma 4.2.

Let δ_t denote the distance from $\lambda_t(M\times\{0\})$ to $\Sigma\cap(E^{n+1}-N)$. It follows from [18] (see also [16, Lemma 5]) in case n>4 and from [14, Lemma 4] or [9, Theorem 8.2] in case n=3 that there exists a $d_t>0$ such that any locally flat n-manifold in E_t homeomorphically within d_t of Σ_t is δ_t -isotopic to Σ_t in E_t . According to Lemma 4.1 there exist real numbers s and u, with s'< s< t< u< u', such that λ_s and λ_u are homeomorphically within d_t of λ_t . If p_t denotes the map projecting $E^n\times E^1$ onto $E^n\times\{t\}$, then $p_t\lambda_s(M\times\{0\})$ and $p_t\lambda_u(M\times\{0\})$ are each δ_t -isotopic to $\lambda_t(M\times\{0\})$ in E_t . By lifting this isotopy through the levels E_r ($s\leq r\leq u$), we construct an embedding h of $M\times[-\frac{1}{2},\frac{1}{2}]$ into $U\cap N$ such that condition (3), as well as the following conditions, holds:

- (4) $h(M \times \{-\frac{1}{2}\}) = \lambda_s(M \times \{0\}),$
- (5) $h(M \times \{\frac{1}{2}\}) = \lambda_u(M \times \{0\}),$
- (6) for each $w \in [-\frac{1}{2}, \frac{1}{2}]$, there exists a distinct $z \in [s, u]$ such that $h(M \times \{w\}) \subset E_z$,
 - (7) diam $h(\lbrace p\rbrace \times [-\frac{1}{2}, \frac{1}{2}]) < \varepsilon/18$ for each p in M.

Since both λ_s and λ_u are homeomorphically close to λ_t , we may assume s and u were chosen so that

- (8) diam $\lambda_s(\{p\} \times [-1, 0]) < \varepsilon/18$ for each p in M,
- (9) diam $\lambda_u(\{p\} \times [-1, 0]) < \varepsilon/18$ for each p in M.

Now $h|M \times [-\frac{1}{2}, \frac{1}{2}]$ can be extended to a homeomorphism h of $M \times [-1, 1]$ onto

$$A_t = \lambda_s(M \times [-1, 0]) \cup h(M \times [-\frac{1}{2}, \frac{1}{2}]) \cup \lambda_u(M \times [-1, 0]).$$

To verify that $X_t \subseteq N$, observe that N has connected boundary, as does X_t (where Bd X_t is taken in E^{n+1} , not in Cl U). Since Bd $X_t \subseteq N$ by construction and since both X_t and N are bounded, X_t must be a subset of N. The only unverified requirement on the construction, condition (2), follows easily from (7)–(9).

ADDENDUM. Suppose $\varepsilon > 0$, X_t and A_t satisfy the conclusions of Lemma 4.3B, and Z is a compact subset of X_t . Then there exists an ε -map of Z into A_t such that $f(Z) \cap \operatorname{Bd} A_t \subseteq Z$ and $f|Z \cap A_t = \operatorname{identity}$.

Proof. Follow the ε -retraction of X_t onto A_t by a small homeomorphism g of A_t into $(Z \cap \operatorname{Bd} A_t) \cup \operatorname{Int} A_t$ such that $g|Z \cap A_t$ =identity.

5. Submanifolds of E^{n+1} whose levels are twice bicollared. The basic result in this section is the following application of Lemma 4.3.

THEOREM 5.1. Let Σ denote an n-manifold embedded in E^{n+1} $(n \neq 4)$ as a closed subset, U a component of $E^{n+1} - \Sigma$, and (a, b) an interval such that for each $t \in (a, b)$ (i) Σ_t is a closed, PL (n-1)-manifold that is collared from U_t and (ii) $Cl \ U - \Sigma_t$ is 1-LC at each point of Σ_t . Then U is 1-LC at each point of $\Sigma(a, b)$.

Proof. Suppose $f: \Delta^2 \to \operatorname{Cl} U$ is a map such that $f(\partial \Delta^2) \subset U$ and $f(\Delta^2) \cap \Sigma \subset \Sigma(a, b)$. Let ε be a positive number less than both $\rho(f(\Delta^2), \Sigma_a \cup \Sigma_b)$ and $\rho(f(\partial \Delta^2), \Sigma)$, and let $\mathscr D$ denote the countable subset of (a, b) described in Lemma 4.1. Then by Theorem 3.2 there exists a map $f_0: \Delta^2 \to \operatorname{Cl} U$ such that

- (1) $f_0|\partial\Delta^2=f|\partial\Delta^2$,
- (2) $\rho(f,f_0) < \varepsilon/3$,
- (3) $f_0(\Delta^2) \cap \Sigma_d = \emptyset$ for each d in D:

For each $t \in (a, b) - \mathcal{D}$, application of Lemma 4.3 yields an $\varepsilon/3$ -retraction r_t of the X_t onto the A_t associated (by Lemma 4.3B) with t and $\varepsilon/3$, where $\Sigma \cap A_t = \Sigma_{s(t)} \cup \Sigma_{u(t)}$. Let π denote the projection of $E^n \times E^1$ onto the second factor. Then $\pi(\Sigma \cap f_0(\Delta^2))$, a subset of $(a, b) - \mathcal{D}$, is covered by the collection \mathscr{C} of open intervals $\mathscr{C} = \{(s(t), u(t)) \mid t \in \pi(\Sigma \cap f_0(\Delta^2))\}$, from which we can extract a finite subcovering \mathscr{F} of $\pi(\Sigma \cap f_0(\Delta^2))$. After eliminating unnecessary elements of \mathscr{F} , we can regard \mathscr{F} as the union of two (finite) collections \mathscr{F}_1 and \mathscr{F}_2 such that for i = 1, 2 no two elements of \mathscr{F}_i intersect. Let F_1 and F_2 denote the underlying point sets of \mathscr{F}_1 and \mathscr{F}_2 respectively.

In case $(s(t), u(t)) \in \mathcal{F}_1$, the addendum to Lemma 4.3 implies the existence of an $\varepsilon/3$ map R_t of $X_t \cap f_0(\Delta^2)$ into A_t such that

- $(4) R_t(X_t \cap f_0(\Delta^2)) \cap \operatorname{Bd} A_t \subseteq X_t \cap f_0(\Delta^2),$
- (5) $R_t | f_0(\Delta^2) \cap A_t = identity$.

Define a map $f_1: \Delta^2 \to \operatorname{Cl} U$ by the rule

$$f_1(x) = R_t f_0(x)$$
, if $f_0(x) \in X_t$ and $(s(t), u(t)) \in \mathscr{F}_1$,
= $f_0(x)$, otherwise.

It follows from (5) and the fact that the X_t 's considered are pairwise disjoint that f_1 is well defined and continuous. Note that

- (6) $f_1|\partial\Delta^2=f_0|\partial\Delta^2$,
- (7) $\rho(f_0, f_1) < \varepsilon/3$,
- (8) $\pi(\Sigma \cap f_1(\Delta^2)) \subset F_2$.

Similarly, in case $(s(t), u(t)) \in \mathscr{F}_2$, the addendum to Lemma 4.3 implies the existence of an $\varepsilon/3$ -map R_t of $X_t \cap f_1(\Delta^2)$ into A_t such that

- (9) $R_t(X_t \cap f_1(\Delta^2)) \cap \operatorname{Bd} A_t = \emptyset$,
- (10) $R_t | f_1(\Delta^2) \cap A_t = identity$.

Define $f_2: \Delta^2 \to \text{Cl } U$ by the rule

$$f_2(x) = R_t f_1(x)$$
, if $f_1(x) \in X_t$ and $(s(t), u(t)) \in \mathscr{F}_2$,
= $f_1(x)$, otherwise.

As before, f_2 is a continuous function satisfying

- (11) $f_2|\partial\Delta^2=f_1|\partial\Delta^2$,
- (12) $\rho(f_1, f_2) < \varepsilon/3$,
- (13) $f_2(\Delta^2) \cap \Sigma = \emptyset$.

Since $f_2|\partial\Delta^2 = f|\partial\Delta^2$ and $\rho(f, f_2) < \varepsilon$, it follows immediately that U is 1-LC at each point of $\Sigma(a, b)$.

REMARKS. Although condition (ii) clearly is a necessary hypothesis for Theorem 5.1, one questions whether it might be superfluous. Even without this condition it follows from [4], by means of the trick emerging here in Lemma 4.1, that Cl $U-\Sigma_t$ is 1-LC at each point of Σ_t for all but at most countably many points t in (a, b), but this fact, obviously, is no help. By attacking the problem differently in the next section, we shall prove, under the hypotheses of Theorem 5.1 without condition (ii), that U is 1-LC at many points of Σ (see Corollary 6.2).

Without much extra effort one can prove the following slightly stronger version of Theorem 5.1. Statements of the other results in this section can be altered in a similar manner.

THEOREM 5.2. Let Σ denote an n-manifold embedded in E^{n+1} ($n \neq 4$) as a closed subset, U a component of $E^{n+1} - \Sigma$, and (a, b) an interval such that (i) for each $t \in (a, b)$, $Cl \ U - \Sigma_t$ is 1-LC at each point of Σ_t and (ii) for all but countably many points t in (a, b), Σ_t is a closed, PL (n-1)-manifold that is collared from U_t . Then U is 1-LC at each point of $\Sigma(a, b)$.

Proof. Simply incorporate those countably many t's of (a, b) that fail to satisfy condition (ii) into the set \mathcal{D} and reapply the proof of Theorem 5.1.

THEOREM 5.3. Let Σ denote an n-manifold embedded in E^{n+1} $(n \neq 4)$ as a closed subset, U a component of $E^{n+1} - \Sigma$, and (a, b) an interval such that for each $t \in (a, b)$ (i) Σ_t is a closed, PL (n-1)-manifold that is collared from U_t and (ii) $\Sigma - \Sigma_t$ is 1-LC at each point of Σ_t . Then U is 1-LC at each point of $\Sigma(a, b)$.

Proof. Let p be a point of Σ_t and $\varepsilon > 0$. There exists a $\delta > 0$ such that any loop in $N_{\delta}(p) \cap (\Sigma - \Sigma_t)$ is contractible in $N_{\varepsilon}(p) \cap (\Sigma - \Sigma_t)$. Since U is locally 1-connected at p in the homology sense [17, Theorem II, 5.35], it follows from [6, Proposition 3.3] that there exists an $\alpha > 0$ such that any loop in $N_{\alpha}(p) \cap U$ is contractible in $N_{\delta}(p) \cap (E^{n+1} - \Sigma_t)$. By cutting off such a contraction in $\Sigma - \Sigma_t$ one can show that each loop in $N_{\alpha}(p) \cap U$ is contractible in $N_{\varepsilon}(p) \cap (Cl\ U - \Sigma_t)$. Using this property one easily can prove that $Cl\ U - \Sigma_t$ is 1-LC at p. Hence, Theorem 5.1 gives the desired result.

THEOREM 5.4. Let Σ denote a closed n-manifold in E^{n+1} $(n \neq 4)$, U a component of $E^{n+1} - \Sigma$, and [a, b] the interval such that $\Sigma = \Sigma([a, b])$. Suppose that for each t in (a, b), Σ_t is a closed PL (n-1)-manifold that is collared from U_t and that for each t in [a, b], Cl $U - \Sigma_t$ is 1-ULC. Then U is 1-ULC.

Proof. Obviously U is 1-LC at points of $\Sigma(a, b)$. Furthermore, by hypothesis, any small loop in U near a point of Σ_a is contractible in a small subset of Cl $U - \Sigma_a$. According to Theorem 3.2 such a contraction can be modified slightly so that the range of the resulting map is a small subset of U. Thus, U is 1-LC at points of Σ_a . The same argument applies to points of Σ_b . Consequently, U is 1-ULC.

Using Theorem 5.4 one can extend results of [11] and [12] to higher dimensions in the following ways.

COROLLARY 5.5. Suppose Σ is a closed n-manifold in E^{n+1} ($n \neq 4$) such that (i) $\Sigma = \Sigma([-1, 1])$, (ii) $\Sigma - (\Sigma_{-1} \cup \Sigma_1)$ is 1-ULC, and (iii) for each $t \in (-1, 1)$, Σ_t is a closed, PL (n-1)-manifold bicollared in E_t and $\Sigma - \Sigma_t$ is 1-ULC. Then $E^{n+1} - \Sigma$ is 1-ULC.

Proof. For either component U of $E^{n+1}-\Sigma$ and each t in [-1, 1], the proof of Theorem 5.3 indicates that $\operatorname{Cl} U-\Sigma_t$ is 1-ULC. Although the hypotheses of Proposition 3.3 of [6] do not apply when $t=\pm 1$, the argument there can be used to establish the property employed in proving Theorem 5.3, namely, for each $\delta>0$ there exists an $\alpha>0$ such that each α -loop in U is contractible in a δ -subset of $E^{n+1}-\Sigma_t$ $(t\neq\pm 1)$.

COROLLARY 5.6. Suppose Σ is an n-sphere in E^{n+1} $(n \neq 4)$ such that both Σ_1 and Σ_{-1} are points and, for each t in (-1, 1), Σ_t is an (n-1)-sphere bicollared in E_t and $\Sigma - \Sigma_t$ is 1-ULC. Then $E^{n+1} - \Sigma$ is 1-ULC.

From Theorem 9 of [16] we obtain the following flatness conditions.

THEOREM 5.7. Suppose Σ is a closed PL n-manifold in E^{n+1} ($n \ge 5$) satisfying the hypothesis of Corollary 5.5. Then Σ is locally flat if and only if Σ can be homeomorphically approximated by locally flat manifolds.

THEOREM 5.8. Let Σ denote the boundary of an (n+1)-cell B in E^{n+1} $(n \ge 5)$ and U the complement of B. Suppose (i) $\Sigma = \Sigma([a, b])$, (ii) for each $t \in (a, b)$, Σ_t is a PL (n-1)-manifold that is collared from U_t , and (iii) for each $t \in [a, b]$, $Cl\ U - \Sigma_t$ is 1-ULC. Then Σ is locally flat.

6. Submanifolds of E^{n+1} whose levels satisfy 1-ULC conditions. In this section we give sufficient conditions, in the spirit of Cannon's work in E^3 [7], for a complementary domain of a closed *n*-manifold in E^{n+1} to be 1-ULC. In place of the hypothesis typical of the results found in §5 that the Σ_t 's be collared PL manifolds stands the weakened hypothesis that the U_t 's be 1-ULC, together with strong restrictions on the embeddings of the Σ_t 's in Σ . As one advantage of this approach, the case n=4 need not be excluded.

THEOREM 6.1. Suppose that Σ is a closed n-manifold in E^{n+1} , Z a component of $E^{n+1}-\Sigma$, and (a, b) an interval such that (i) $\Sigma_t=\operatorname{Bd} Z_t$ and (ii) Z_t is both 0-ULC and 1-ULC for each t in (a, b). Then (a, b) contains a dense G_{δ} -subset G such that G is 1-LC at each point of G.

Proof. Equivalently we shall show that the set F of levels t in (a, b) at which Σ_t contains a point q such that Z fails to be 1-LC at q is a 0-dimensional F_q -set.

For each positive integer n let X_n denote the set of points x in Σ such that for no neighborhood V of x is every loop of $V \cap Z$ contractible in a (1/n)-subset of Z. Then X_n is a compact subset of Σ , and therefore $\pi(X_n)$ is a closed subset of E^1 , where π denotes the map projecting $E^n \times E^1$ onto the second factor. Define F_n as $(a, b) \cap \pi(X_n)$. Obviously $F = \bigcup F_n$. Hence, we only need show F_n to be 0-dimensional.

Suppose to the contrary that some F_n contains a subinterval [a', b'] of (a, b). By the Baire Category Theorem [a', b'] then contains a subinterval [c, d] such that corresponding to some dense subset Y of [c, d] there exists a positive number δ with the property that each δ -loop in Z_t is null homotopic in a (1/3n)-subset of Z_t $(t \in Y)$. To reach the required contradiction we shall apply Hosay's argument [12] to prove that each point q of $\Sigma(c, d)$ has a neighborhood V such that every loop in $V \cap Z$ is null-homotopic in a (1/n)-subset of Z.

Given any such point q let U be a round open ball in E^{n+1} containing q of diameter less than min $\{\delta, 1/3n\}$. Assume further that U misses E_c and E_d . Let V be a neighborhood of q such that $V \subset U$ and $V \cap \Sigma$ lies in an n-cell in $U \cap (\Sigma - (\Sigma_c \cup \Sigma_d))$. We must show that any map f of the boundary of a 2-cell D into $V \cap Z$ has an extension g sending D into a (1/n)-subset of Z.

Using the notation developed in [12] we trace the argument given on pp. 371-373 there with certain modifications. First, replace part A by the following observation: the hypotheses that $\Sigma_t = \operatorname{Bd} Z_t$ and Z_t is 0-ULC imply that there exists an arc in $U \cap Z_t$ connecting each pair of points of $h(A_t^i) \cap f(\partial D)$. Let K_t^i denote the union of the (finitely many) arcs obtained in this way. Second, in part B observe that the special levels (the t's) can be chosen from Y, since Y is dense in [c, d]. The last two paragraphs of B may be ignored, noting instead that any map of a simple closed curve into

$$(K^{t_i} \cup K^{t_{i+1}} \cup h(\partial D)) \cap \bigcup \{E_t | t_i \leq t \leq t_{i+1}\}$$

is homotopic, in the intersection of Z and the (1/3n)-neighborhood of U, to a constant map. Making use of this fact at the end of part D, we can construct the required extension g sending D into Z.

COROLLARY 6.2. Suppose that Σ is a closed n-manifold in E^{n+1} , U a component of $E^{n+1}-\Sigma$, and (a,b) an interval such that for each $t \in (a,b)$, Σ_t is a closed (n-1)-manifold that is collared from U_t . Then (a,b) contains a dense G_δ -subset G such that G is 1-LC at each point of G.

THEOREM 6.3. Suppose that Σ is a closed n-manifold in E^{n+1} , Z a component of $E^{n+1}-\Sigma$, and (a,b) an interval such that (i) $Cl(Z)-\Sigma_t$ is 1-ULC and (ii) Z_t is 1-ULC for each t in (a,b). Then (a,b) contains a dense G_δ -subset G such that Z is 1-LC at each point of $\Sigma(G)$.

Proof. We begin by repeating the first three paragraphs of the proof of Theorem 6.1. Then, with minor modifications similar to those given in the preceding proposition, Cannon's argument [7, Theorem 1] can be applied to complete the proof.

It would be interesting to know whether the hypotheses of either Theorem 6.1 or 6.3 actually imply that Z is 1-LC at each point of $\Sigma(a, b)$. One should note that some restrictions on the set Z are necessary, for it is quite simple to describe a connected open subset Z of E^{n+1} ($n \ge 2$) such that each Z_t is 1-ULC but Z fails to be 1-LC at certain points of Bd Z. In particular, a bounded open subset Z of E^{n+1} ($n \ge 2$) need not be 1-ULC even if each Z_t is 1-ULC.

THEOREM 6.4. Suppose Σ is a closed n-manifold in E^{n+1} , U a component of $E^{n+1} - \Sigma$, and (a, b) an interval such that (1) for each $t \in (a, b)$, U_t is 1-ULC and (2) for each compact 0-dimensional subset C of (a, b), $Cl\ U - \Sigma(C)$ is 1-ULC. Then U is 1-LC at each point of $\Sigma(a, b)$.

Proof. Let f be a map of the disk Δ^2 into Cl U such that $f(\partial \Delta^2) \subset U$ and $f(\Delta^2) \cap \Sigma \subset \Sigma(a, b)$. If G denotes the dense G_{δ} -subset of (a, b) promised by Theorem 6.3, then from hypothesis (2) above and Theorem 3.2 we find that f can be adjusted slightly, not changing the map on $\partial \Delta^2$, such that $f(\Delta^2) \cap \Sigma \subset \Sigma(G)$ and $f^{-1}(\Sigma \cap f(\Delta^2))$ is 0-dimensional. As a result, U is 1-LC at each point of $\Sigma \cap f(\Delta^2)$, and it is then a simple matter to alter f further so that $f(\Delta^2)$ misses Σ entirely. Hence, U is 1-LC at each point of $\Sigma(a, b)$.

COROLLARY 6.5. Suppose Σ is a closed n-manifold in E^{n+1} such that each component U of $E^{n+1}-\Sigma$ satisfies (1) for each $t \in E^1$, U_t is 1-ULC and (2) for each compact, 0-dimensional subset C of E^1 , $Cl\ U-\Sigma(C)$ is 1-ULC. Then $E^{n+1}-\Sigma$ is 1-ULC.

Corollary 6.5 can be interpreted as a generalization of [7, Corollary 3].

REMARK. Variations on Theorem 6.4 and Corollary 6.5 can be obtained by exchanging condition (2) in each for the following condition:

(2*) for each compact 0-dimensional subset C of (a, b), or E^1 , as the context requires, $\Sigma - \Sigma(C)$ is 1-ULC.

The proof given for Theorem 2 of [7] establishes that to each $\delta > 0$ there corresponds an $\alpha > 0$ such that each α -loop in U is contractible in an ε -subset of $E^{n+1} - \Sigma(C)$. Using this we can prove, as in Theorem 5.3, that $\operatorname{Cl} U - \Sigma(C)$ is 1-ULC.

Finally, Corollary 6.5 and [16, Theorem 9] can be combined, as in §5, to produce a local flatness criterion.

THEOREM 6.6. Suppose Σ is a closed PL n-manifold in E^{n+1} ($n \ge 4$) satisfying the hypotheses of Corollary 6.5. Then Σ is locally flat if and only if Σ can be homeomorphically approximated by locally flat manifolds.

REFERENCES

- 1. J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.
- 2. R. H. Bing, E³ does not contain uncountably many mutually exclusive surfaces, Bull. Amer. Math. Soc. 63 (1957), 404. Abstract #60-801t.
- 3. ——, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33-45. MR 28 #3408.
- 4. J. L. Bryant, Concerning uncountable families of n-cells in Eⁿ, Michigan Math. J. 15 (1968), 477-479. MR 38 #6561.
- 5. ——, On embeddings with locally nice cross-sections, Trans. Amer. Math. Soc. 155 (1971), 327-332.
 - 6. ——, Euclidean n-space modulo an (n-1)-cell (to appear).
- 7. J. W. Cannon, *-taming sets for crumpled cubes. II. Horizontal sections in closed sets, Trans. Amer. Math. Soc. 161 (1971), 441-446.
- 8. J. Cheegar and J. M. Kister, Counting topological manifolds, Topology 9 (1970), 149-151. MR 41 #1055.
- 9. Robert Craggs, Small ambient isotopies of a 3-manifold which transform one embedding of a polyhedron into another, Fund. Math. 68 (1970), 225-256.
- 10. C. H. Dowker, Mapping theorem for non-compact spaces, Amer. J. Math. 69 (1947), 200-242. MR 8, 594.
- 11. W. T. Eaton, Cross sectionally simple spheres, Bull. Amer. Math. Soc. 75 (1969), 375-378. MR 39 #957.
- 12. Norman Hosay, A proof of the slicing theorem for 2-spheres, Bull. Amer. Math. Soc. 75 (1969), 370-374. MR 39 #956.
- 13. R. A. Jensen, Cross sectionally connected 2-spheres are tame, Bull. Amer. Math. Soc. 76 (1970), 1036-1038.
- 14. J. M. Kister, *Isotopies in 3-manifolds*, Trans. Amer. Math. Soc. 97 (1960), 213-224. MR 22 #11378.
- 15. L. D. Loveland, Cross sectionally continuous spheres in E³, Bull. Amer. Math. Soc. 75 (1969), 396-397. MR 39 #958.
- 16. C. L. Seebeck, III, Collaring an (n-1)-manifold in an n-manifold, Trans. Amer. Math. Soc. 148 (1970), 63-68. MR 41 #2692.
- 17. R. L. Wilder, *Topology of manifolds*, Amer. Math. Soc. Colloq. Publ., vol. 32, Amer. Math. Soc., Providence, R. I., 1963. MR 32 #440.
- 18. Perrin Wright, A uniform generalized Schoenflies theorem, Bull. Amer. Math. Soc. 74 (1968), 718-721. MR 37 #4799.